EE210: Switching Systems

Lecture 1: Course Introduction and Outline Number Systems

Prof. YingLi Tian
August 28, 2017

Department of Electrical Engineering
The City College of New York
The City University of New York (CUNY)
Introduce yourself

- Name
- Which year of your undergraduate study?
- Why take this course (your expectations)?
- Home country
- Others you want to share
General Information

- **Class Time:** Monday, Wednesday: 2:00pm – 3:15pm
- **Location:** Shepard Hall S-378
- **Office Hours:** Monday 10:00-12:00am
 Wednesday 3:30pm – 4:30pm
 Room ST512 or by appointment
- **Email:** yeyuancheng1988@gmail.com
- **TA:** Mr. Yuancheng Ye, yeyuancheng1988@gmail.com
- **Course Web-page:**
 http://www-ee.ccny.cuny.edu/www/web/yltian/EE2100.html
Pre-requisites

- Math2020

OR

- If you haven’t taken Math2020, please drop this course because:
 - You will not get the credits (Dept requirement).
COURSE PROTOCOLS & POLICIES
Course textbook

- **Introduction to Logic Design**, 3rd Edition, by Alan B. Marcovitz,

- **E-Book**: can be searched from website
Course Objective

- Be aware where logic circuits are in our daily life.
- To know that how logic circuits are implemented in real world.
- To get familiar with the concept of design process
 - Learn fundamental technologies of analysis and synthesis of combinatorial circuits
 - Karnaugh maps
 - Analysis and design of sequential circuits
- Digital computer and industrial applications
- Have fun!
Course outline

- Assignments
 - Reading, Practices, and Review – help to understand better what you have leant.
 - Homework – Finish before due day.

- 2 Exams
 - Mid Exam – 25% of final grade
 - Final Exam – 35% of final grade
HW

- Hand in on time in the class or email to TA (keep the email receipt in case the email does NOT go through.)
- HW counted 40% of your final grade.
- Late homework submissions will receive 0% credit.
- Any HW copied from other students (both students), textbook solutions, or other resources will get 0 credits for that HW.
Grading Policy

- Homework: 40%
- Mid Exam: 25%
- Final Exam: 35%
- Grades: A+: 97~100; A: 93~96; A-: 90~92; B+: 87~89; B: 83~86; B-: 80~82; C+: 77~79; C: 73~76; C-: 70~72; D: 60~69; F: under 60

The final exam covers material of the entire semester

Note: The final grades are non-negotiable unless the TA makes mistakes.
Course Policy

- Attend classes
- Silence your cell phone
- No talking when I am talking
- Be active in the class

Zero-Tolerance on Cheating

- Exams & Homework
- Anyone caught cheating will be dealt with according to applicable University policy.
Make-up Exams

- Make-up examinations will only be given to students who miss examinations as a result of excused absences according to applicable current University policy. The student should provide the necessary documents. Make-up examinations may be in a different format from the missed examination.
INTRODUCTION TO SWITCHING SYSTEMS — LOGIC DESIGN
Logic Circuits in Our Life

- Computers
- Digital watches
- CD players
- Electronic games
- Telephone and television networks
- Missile guidance systems
- Airplanes and space shuttles
Logic Design

- One or more digital signal inputs
- One or more digital signal outputs
- Outputs are only functions of current input values (ideal) plus logic propagation delays
Example 1

A system with three inputs, A, B, and C, and one output, Z, such that Z=1, if two of the inputs are 1.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1.1 A truth table for Example 1.1.
Combinational Logic

- Combinational logic has no memory (see Example 1)!
 - Outputs are only function of current input combination
 - Nothing is known about past events
 - Repeating a sequence of inputs always gives the same output sequence
- Sequential logic (covered later) does have memory
 - Repeating a sequence of inputs can result in an entirely different output sequence
Sequential Logic Examples

Example 2: A system with one input, A, plus a clock, and one output, Z, which is 1 if and only if the input was 1 at the last three consecutive clock times.
Number Systems

\[N = a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \cdots + a_2 r^2 + a_1 r^1 + a_0 \]

- \(n \) – the number of digits
- \(r \) – radix or base
- \(a_i \) -- coefficients
- If \(r = 10 \) – decimal \(\quad 7642 = 7 \times 10^3 + 6 \times 10^2 + 4 \times 10 + 2 \)
- If \(r = 2 \), binary – also called “bits”. A n-bit number can represent the positive integers from \(0 \) to \(2^n - 1 \)
- \(11011 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27 \)
Number Systems -- Binary

Table 1.2 Powers of 2.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>11</td>
<td>2,048</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>12</td>
<td>4,096</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13</td>
<td>8,192</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>14</td>
<td>16,384</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>15</td>
<td>32,768</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>16</td>
<td>65,536</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>17</td>
<td>131,072</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>18</td>
<td>262,144</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>19</td>
<td>524,288</td>
</tr>
<tr>
<td>10</td>
<td>1,024</td>
<td>20</td>
<td>1,048,576</td>
</tr>
</tbody>
</table>
Binary Integers

Table 1.3 First 32 binary integers.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>4-bit</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>16</td>
<td>10000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
<td>17</td>
<td>10001</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0010</td>
<td>18</td>
<td>10010</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0011</td>
<td>19</td>
<td>10011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0100</td>
<td>20</td>
<td>10100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>0101</td>
<td>21</td>
<td>10101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>0110</td>
<td>22</td>
<td>10110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>0111</td>
<td>23</td>
<td>10111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
<td>24</td>
<td>11000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1001</td>
<td>25</td>
<td>11001</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>1010</td>
<td>26</td>
<td>11010</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>1011</td>
<td>27</td>
<td>11011</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>1100</td>
<td>28</td>
<td>11100</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>1101</td>
<td>29</td>
<td>11101</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>1110</td>
<td>30</td>
<td>11110</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>1111</td>
<td>31</td>
<td>11111</td>
</tr>
</tbody>
</table>
Announcement:

- Read Chapter 1.1, 1.2
- Next class:
 - Binary Addition
 - Signed and unsigned numbers
 - Combinational Systems
 - Truth Tables (Chapter 2.1)